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Report on signature genes for environmental status 
diagnosis 

Introduction 
The BONUS Blueprint project aims at developing a framework for predicting the environmental 
status of a water body based on the composition of microbial taxa and encoded gene functions 
in its plankton community. The basis for this approach is twofold. First, microorganisms are the 
main catalysts for most biogeochemical processes in seawater, thus microbial community 
composition is expected to be correlated with environmental conditions. Second, 
microorganisms have different niches and are selected for by the prevailing environmental 
conditions. Thus, microbial consortia are shaped by their environment, but the environment is 
also shaped by them. In the BONUS Blueprint project we measure microbial community 
composition by either taxonomic or functional composition. Taxonomic composition will vary 
because different taxa have different niches and carry out different processes. Functional 
composition will vary because organisms adapted to different niches and carrying out different 
processes will encode different sets of functional genes. 
 
The goal of D4.3 is to examine the coupling between microbial community composition and 
environmental conditions, and to establish how we can use the microbiome data to predict 
environmental data. We show that the microbiome is correlated with environmental conditions, 
both at the overall community level, and at the level of specific genes and taxa. We further show 
that we can predict specific environmental conditions from the metagenome data. This is 
demonstrated here for parameters that can quite easily be measured in situ or by routine lab 
procedures (such as temperature, nutrient levels, etc.), but we argue that the same approach 
should also be applicable for predicting conditions or states that are more difficult to measure by 
standard methods. Finally, we discuss this proof-of-principle in a marine monitoring context.  
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Data and Methods 
  
The analysis is based on metagenome data from 97 samples collected during two sampling 
cruises and by time-series sampling at a single-station (Figure 1). The “Transect” cruise dataset 
consists of pelagic samples collected in the summer of 2014 from 3 depths at 10 stations 
covering the complete salinity gradient (Skagerrak to Bothnian Bay). The “Coastal” cruise data  
consists of mainly coastal surface-water samples collected in the summer of 2015 and covering 
the mesohaline (Baltic Proper and Gulfs of Finland and Riga). The “LMO” sample set consists of 
surface-water samples from the Linnaeus Microbial Observatory (LMO) located 10 km east of 
Öland, sampled weekly or bi-weekly during the ice-free season of 2012 (Hugerth et al. 2015).  
 
Microbial cells from each water sample were captured on a filter, and total DNA was extracted 
from the mixture of cells on the filture. Shotgun sequening libraries were prepared and Illumina 
sequncing was conducting, generating on average 42 million metagenome sequencing read-
pairs (2 x 100 bp) per sample. 
 
In order to quantify functional genes and taxonomic groups in the samples in a reproducible and 
relatively quick manner, the data was bioinformatically mapped onto a reference metagenome 
(BARM; Baltic Sea Reference Metagenome) described in Deliverable 4.2 of the BONUS 
Blueprint project. BARM consists of 6.8 million genes assembled from 81 metagenome samples 
(most of which overlap with the samples analysed here) that have been taxonomically and 
functionally annotated (Alneberg et al. 2018). BARM can be accessed via BalticMicrobeDB with 
a graphical user interface  (https://barm.scilifelab.se/). For each sample we quantified taxa at 
different taxonomic levels (Domain, Class, Order, Family, Genus) and gene functions using 
widely adopted annotation schemes (COGs, PFAMs, Enzyme Commission numbers, etc.). We 
also predicted abundances of different metabolic pathways in the samples (KEGG modules) 
based on the composition of enzyme classes. We refer to the quantifications as taxonomic or 
functional profiles of the samples. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

D4.3 BONUS Blueprint 

3 
 

 
 
Figure 1. Map showing the sampling locations. The three sample sets included in the analysis 
presented here (Transect, Coastal and LMO) are indicated with different symbols. The marker 
colour indicates the salinity of the water sample while the size indicates the sampling depth. The 
contour lines indicate depth with 50 m intervals. 

Results 

Spatio-temporal variation of the Baltic Sea microbiome 
Analysis of the samples from the Transect cruise reveals a gradual change in taxonomic 
composition along the north-to-south salinity gradient of the Baltic Sea, and also changes with 
depth (Figure 2a). The same dominant prokaryotic taxonomic groups were observed as in 
previous pan-Baltic studies (Herlemann et al. 2011; Dupont et al. 2014; Hu et al. 2016; 
Herlemann et al. 2016) and similar higher-level trends of an increase in Alpha- and 
Gammaproteobacteria and a decrease in Actinobacteria and Betaproteobacteria with increasing 
salinity. Thus, the overall structure of the Baltic Sea microbiome appears to be stable across 
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years. Seasonal dynamics is another characteristic of the Baltic Sea, which can also be 
observed in the metagenome data. As previously seen at station LMO (Lindh et al. 2015; 
Hugerth et al. 2015), succession in the phytoplankton community is paralleled by succession in 
the heterotrophic bacterioplankton community, with the major heterotrophic groups 
Bacteroidetes and Actinobacteria peaking in spring and summer, respectively (Figure 2b). 

 
 
Figure 2. Barplots showing the relative abundance of dominant taxonomic classes (each 
representing > 0.01% of annotated reads) in the Transect and LMO datasets. A) Transect 
dataset with surface, mid and deep layer samples in separate barplots, going from low salinity 
(Bay of Bothnia) to marine (Skagerrak) conditions. Sample water salinity indicated below each 
bar. B) LMO (March to December 2012) samples, with sampling date indicated below each bar. 
 
When instead analysing community composition based on functional data, we likewise see that 
samples are structured along the physio-chemical gradients of the Baltic Sea. Plotting the cruise 
samples in two dimensions based on their functional profiles (in this case counts of COGs, but 
other functional annotations give similar results) shows that functional community composition is 
correlated with depth, temperature and salinity (Figure 3a,b). Moreover, ordination of the LMO 
samples based on their functional profiles demonstrates a clear seasonal succession in the 
community (Figure 3c). 
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Figure 3. Principal coordinates analysis (PCoA) plots of community composition calculated as 
counts of functional genes (COGs). Samples with more similar community composition are 
more proximal in the plots. The percentage of variation explained by the principal coordinates 
(axes) are indicated. A-B) Transect data, with color representing temperature (in A) and salinity 
(in B), respectively, and size representing depth. C) LMO data, with color representing 
temperature, and samples adjacent in time being connected with a line. 
 

Distribution of genes and pathways of biogeochemical relevance 
The metagenome data also gives opportunities to see how genes for particular biogeochemical 
pathways are distributed in time and space. Microbes are main drivers of carbon, nitrogen and 
sulfur cycles in the sea. In Figure 4 we show how genes for three pathways (KEGG modules) 
for nitrogen cycling are distributed in the Transect dataset. Nitrogen fixation, the process of 
converting N2-gas to ammonium, providing bioavailable nitrogen for bacterial and phytoplankton 
growth, is as expected mainly present in the surface layer since cyanobacteria are the primary 
contributors to nitrogen fixation in the Baltic Sea. It is also higher in Baltic Proper compared to 
the northern sub-basins, in accordance with the Baltic Proper plankton community being limited 
by nitrogen during summer. In contrast, nitrification (oxidation of ammonia to nitrate) and 
denitrification (oxidation of organic carbon using nitrate resulting in N2 formation) are both 
restricted to deeper waters with lower oxygen levels. Interestingly, here we also detect genes for 
the dissimilatory nitrate reduction to ammonium (DNRA) pathway, although at ~20 x lower 
abundance than denitrification. DNRA is an alternative process to denitrification, where 
ammonia is produced rather than N2, thus maintaining a bioavailalbe N source in the system. It 
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is occasionally a dominating nitrate sink in oceanic oxygen minimum zones but has been little 
studied in the Baltic Sea (Bonaglia et al. 2016). 

 
 
Figure 4. Relative abundance of genes for select nitrogen metabolic pathways in the Transect 
metagenomes. A) Nitrogen fixation (KEGG module M00175). B) Nitrification (M00528). C) 
Denitrification (M00529). D) Dissimilatory nitrate reduction to ammonium (DNRA) (M00530). 
Lines connect samples from the same depth layer (surface, mid or deep). Y-axis represents 
sampling depth and dot color oxygen concentration (µmol/l). Dot size represents mean 
abundance of the genes in the pathway. Different magnifications of the dots were used for 
different pathways; with 500, 750, 750 and 2500 x magnification in A, B, C and D, respectively. 
 
Besides nitrogen, phosphorous (P) is an essential nutrient for sustaining plankton growth, being 
a key component in biomolecules such as DNA, RNA and phospholipids. Due to inflow of 
riverine water depleted of P, the plankton communities of the northern basins of the Baltic tend 
to be more P-limited than the southern basins. But there is also a temporal dimension with 
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excess amounts of nutrients in winter that is depleted during the spring phytoplankton bloom. 
The summer community of the central Baltic Sea is primarily N limited but also by P, especially 
during blooms of nitrogen fixing cyanobacteria. Microbes can take up inorganic phosphorous as 
phosphate ions either using the constitutively expressed low-affinity uptake system PitA/PitB or 
using the phosphate-starvation induced Pst system. In our metagenomes we see a gradual 
change in the abundance ratio between high- and low affinity system genes along the Baltic 
transect (Figure 5), with the highest ratio in the north, consistent with the microbes in these 
waters being adapted to more P-limited conditions than in the south, since high-affinity systems 
are better for taking up low-concentration ions. 

Figure 5. Relative abundance of gene families for phosphate and phosphonate uptake along 
the Transect (left panel) and at station LMO (right panel). The high-affinity phosphate 
transporter gene families (COG0581, COG1117, COG0573, COG0226) belong to the ABC-type 
transporter complex pstSACB and the low-affinity family (COG0306) to the PitA/PitB uptake 
system. 
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We also see a temporal trend at station LMO with a higher ratio after the spring bloom when P 
concentrations are lower (Figure 5). Microbes can also utilize organic phosphorous such as 
phosphonates, as recently demonstrated for Nodularia spumigena (Teikari et al. 2018). The 
BARM metagenome includes a large number of phosphonate uptake genes belonging to two 
major gene families (Figure 5). The abundances of these are usually lower but in the same 
order of magnitude as the inorganic phosphate uptake gene families, indicating that 
phosphonate may be an important phosphorous source for Baltic Sea microbes. 

Detection of toxin genes 
In addition to monitoring genes and metabolic pathways of biogeochemical relevance, the 
metagenome can be used to monitor features of relevance to human and animal health, such as 
toxin genes. The Cyanobacterium Nodularia spumigena is known to produce the hepatotoxin 
nodularin by utilizing the nodularin synthetase enzyme complex (Sivonen et al. 1989). The nda 
genes coding for the required enzymes are located in a major cluster in the genome. 
Koskenniemi et al. (2007) showed that the prevalence of the ndaF gene as assessed by 
quantitative PCR (qPCR) in Baltic Sea waters correlated strongly with concentration of the 
actual toxic compound nodularin. They concluded that Nodularia cells produce the toxin at a 
constant level during the period and locations studied. Therefore, the detection of Nodularia 
sequences harbouring nda genes in metagenomic data is likely to indicate relevant levels of the 
nodularin toxin in a given sample. We identified all Nodularia nda genes in the BARM 
metagenome (with average 99% amino acid identity to those of N. spumigena CCY9414). In 
Figure 6 we quantified these genes in the LMO data set. The presence of nda genes coincided 
with the presence of N. spumigena filaments in the water, as detected by microscopy. The same 
approach can potentially be used to monitor other plankton toxin genes. 
 

 
 
Figure 6. Barplot of nda gene abundances (sum of all nda [ndaA – ndaI] genes) (darkgrey bars, 
right y-axis) in the LMO metagenomes, and microscopy-estimated N. spumigena filaments per 
ml (lightgrey bars, left y-axis) for the same set of samples. 
 

Predicting environmental parameters from the microbiome 
Above we demonstrated how overall community composition and specific genes and pathways 
change with environmental conditions. Below we show that we can also predict environmental 
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conditions from the metagenome data. For doing so we use a machine-learning approach called 
Random Forest (RF) regression (Breiman 2001). In RF an ensemble of decision trees are 
constructed, each tree predicts the value of a response variable based on the values of a set of 
features. In our case the response variable is an environmental parameter such as temperature 
or phosphate concentration, and the features are relative counts of microbial taxa or functional 
gene groups. Each tree is trained on a different random subset of the samples, and using a 
random subset of the features. This procedure makes the predictions robust and also makes it 
possible to assess the prediction accuracy by evaluating the trees using the samples that were 
not included in the training of those trees (out-of-bag evaluation). RF also identifies the most 
important features for predicting a parameter (i.e. what taxa or functional genes). 
 
We used the metagenome data from the 97 samples described above, utilising either relative 
counts (as percentage of total sequencing reads for the sample) of 1) taxonomic data (genera), 
or 2) functional gene groups (COGs) to train RFs to predict a set of 11 environmental 
parameters. All parameters except NO2 displayed a significant correlation (P < 0.01) between 
metagenome-predicted and measured parameter values (Figure 7; Table 1). Temperature, 
salinity and dissolved organic carbon (DOC) were the three parameters that were best predicted 
(Table 1). The most important genera for predicting the salinity level belonged to 
Alphaproteobacteria, Gammaproteobacteria and Actinobacteria, in accordance with these taxa 
gradually changing along the Baltic Sea salinity gradient. 
 

 
 
Table 1. Correlations between metagenome-predicted and measured values for different 
environmental parameters. Predictions were made using counts of either taxonomic groups 
(genera) or functional gene groups (COGs; clusters of orthologous groups). Coefficients for 
Pearson and Spearman rank-order correlations are shown. 
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Figure 7. Measured (x-axes) and metagenome-predicted (y-axes) values for select parameters. 
Predictions were done using Random forests trained on either A) taxonomic (genera counts) or 
B) functional (COG counts) data from the metagenomes. The training and predictions were 
done using separate samples (out-of-bag predictions; Brieman 2001). Each dot is one sample, 
colored according to its sample group. Spearman rank-order correlation coefficients are 
indicated in the headers. Temp: Temperature (°C); O2 : O2 (µmol/l); Sal: Salinity (PSU); NH4: 
NH4 (µM); DOC: Dissolved organic carbon (µM); Chla: Chlorophyll a (µg/l). 
 
Next we wanted to address how the predictions are influenced by sequencing depth (i.e. 
number of sequences read for each sample), since sequencing depth is correlated with cost. 
For the samples above, we obtained 3 - 103 million metagenome sequence reads per sample. 
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After taxonomic and functional annotation, 25,000 - 1.5 million and 360,000 - 22 million reads 
per sample were assigned to prokaryotic genera and gene functions (COGs), respectively. We 
subsampled different numbers of annotated reads from each sample before RF training and 
prediction. Figure 8 shows prediction accuracy as a function of number of annotated sequencing 
reads when predicting temperature in the samples. For gene-function data, prediction accuracy 
increase strongly with read depth, and work poorly at low depth, while for taxonomic data, 
already at 100 annotated reads (corresponding to on average 8000 starting reads) we get good 
predictions, and accuracy does not increase substantially with more reads. 
 

 
 
Figure 8. Measured (x-axes) and metagenome-predicted (y-axes) values for temperature (ºC) 
using varying number of annotated sequence reads using either A) taxonomic (genera counts) 
and B) functional (COG counts) data. Number of reads used is indicated above each plot.  

Discussion and future perspectives 
The BONUS Blueprint project is based on the prerequisite that a tight coupling exists between 
the bacterioplankton community and the physico-chemical properties of the water in which it 
resides. Before the onset of the project the scientific literature indicated that this would be the 
case (e.g. Herlemann et al., 2011), and this project has gathered significantly more evidence in 
support of this view. We show here using metagenome data how microbial communities change 
along the gradients of the Baltic Sea, both at an overall community level and for select genes 
and pathways. 
 
Accuracy of predictions 
The fact that we can predict environmental conditions from the metagenome data was one of 
the hopes of the project that had not been achieved before. Since then, a couple of studies have 
reported this type of analysis in aquatic systems. Firstly, Sunagawa et al. (2015) were able to 
predict temperature in the Tara Ocean global metagenome dataset with high accuracy (R = 
0.86) and secondly Smith et al. (2015) used microbiome data to predict concentrations of a 
range of chemicals in groundwater, however with rather low accuracy. Predicting basic 
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parameters such as temperature, salinity or nutrient levels may appear to be of limited use since 
these can be measured by simpler means. However, if one can measure a whole spectrum of 
parameters using only the digital DNA read-out it may be both cheaper and quicker than using 
conventional methods for environmental monitoring. Further, the proof-of-principle presented 
here holds promise for a future wider use. 
 
In our analysis we get similar accuracy of predictions when using taxonomic and functional 
classification of the metagenome data, but when using taxonomic data a smaller number of 
reads is needed. This is likely due to that the taxonomic data only included a few hundred 
different features (genera) while the functional data had several thousand features (COGs). The 
larger number of features for the functional data makes the abundance estimates for these 
features noisier due to fewer counts per feature. The fact that taxonomic data works well implies 
that, as an alternative to metagenomics, amplicon sequencing of taxonomic genes 
(‘metabarcoding’) can be used. This makes the analysis considerably cheaper since costs for 
sequencing library preparation and sequencing are an order of magnitude lower for 
metabarcoding (ca 30€ per sample) than for metagenomics (ca 300€ per sample). Moreover, 
bioinformatics analyses are considerably simpler and computational demands lower.  
 
The added advantage with metagenomics compared to metabarcoding is, however, that it gives 
direct information on specific genes and pathways that may be of particular environmental or 
health relevance, and the data can be used to improve our understanding of the ecosystem and 
eventually create better ecosystem models.  
 
Indicators for environmental status 
An aim of the BONUS Blueprint project has been to explore the use of metagenomics data as a 
basis for indicators of environmental status in the Baltic Sea to assess progress in 
implementation of marine policies such as the HELCOM Baltic Sea Action Plan and the EU 
Marine Strategy Framework Directive (MSFD). Specifically we set out to identify a minimal set of 
genetic indicators that collectively, based on their relative abundances, are diagnostic for 
specific environmental conditions. The fact that basic parameters can be predicted with fairly 
high accuracy substantiates that metagenomics can be used as a basis for assessing 
environmental status and also indicates that we can train classifiers to predict other qualities of 
the water body that are harder to measure by conventional methods.  
 
With the Random forest approach used here we are not restricting the analysis to a specific 
subset of functional genes or taxa, but instead the algorithm learns to associate patterns in the 
ensemble of features with environmental conditions. If metagenomic sequencing will be used for 
the future monitoring, there is no need to restrict the analysis to a smaller a priori defined set of 
features. However, if alternative, directed approached are to be used, such as hybridisation to 
gene-specific probes on gene chips, or quantitative PCR on panels of genes, it is of value to find 
specific genes of particularly high predictive power. To this end we identified the 10 most 
important functional gene families (COGs) for predicting each of the environmental conditions 
and trained the Random forest using the combination of these COGs. The results were as good 
as using the whole set of functional genes (data not shown) indicating that a substantially 
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smaller set of genes can be used for predicting the environmental conditions, opening up the 
possibility to use targeted approaches. 
 
An example of when metagenomic indicators could be an advantage is in the screening for 
eutrophication in coastal areas as a complement to methods based on the more time-
consuming establishment of inventories of macroalgae and zoobentos. The metagenomic data 
can also be used to assess genes indicative of specific pressures such as cyanobacterial toxins 
as shown here. Not least, indicators or indexes reflecting the diversity of the microbial 
community can be developed. Diversity indicators are specifically requested by the European 
Commission Decision on Good Environmental Status (EU 2017/848) to asses the impact of 
human activites on marine food webs. Using either metagenomics or metabarcoding, diversity 
indices for either the whole microbial plankton community or for specific taxonomic groups, such 
as different types of phytoplankton, can easily be obtained (e.g. Hu et al., 2016). 
 
A challenge for the development of indicators based on metagenomics data is to define a 
threshold value that sets the boundary between ‘good’ and ‘not good’ environmental status. For 
existing indicators used in HELCOM or under the MSFD, this is typically done based on the use 
of long-term data sets to define a ‘reference period’ or by use of ‘reference sites’ with limited 
impact of human activities. With only a few years of metagenomic data available, and no pelagic 
environment in the Baltic Sea being unaffected by human activites, none of these options to 
define threshold values are available for the indicator based on metagenomics. Instead, we 
explored manipulations experiment carried out in the project to define a metagenome signal that 
corresponds to a significant effect by environmental pressure, i.e. to defined ‘not good status’. 
However, the experimental data do not cover a sufficient range of environmental conditions to 
support such an approach.  
 
Detecting changes in central biogeochemical processes 
The BONUS Blueprint datasets include vast opportunities to follow changes in biogeochemical 
processes of both ecological and management interest. In this context, the reduction targets for 
inputs of nitrogen and phosphorus to the Baltic Sea that have been agreed by the Baltic Sea 
countries can be highlighted. These reduction targets only make up a tenth of the measured 
turnover of nitrogen and phosphorus by microbes and thus, even minor changes to microbial 
processes may affect the results of management measures. In this report the results from a few 
genes and pathways involved in nitrogen and phosphorus cycling have been higlighted. With 
regard to nitrogen transformation pathways, we demonstrate that for genes involved in 
“opposing” processes such an nitrogen fixation and denitrification the spatial distribution pattern 
of the genes follows the expected patterns given what is known about the nitrogen cycle in the 
Baltic Sea. Although we did not measure biogeochemical process rates for these samples, the 
data indicates that the metagenome can be used to infer biogeochemically relevant 
transformations and the ratio between the central genes could tentatively serve as a proxy for 
directional changes in these central processes. Furthermore, the metagenomic datasets show 
the presence of genes involved in two processes that have received limited attention in the 
Baltic Sea so far; the potential for dissimilatory nitrate reduction (DNRA) and uptake of 
phosphonate. The substrate for DNRA is nitrite and the process is thus “competing” with 
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denitrification under similar environmental conditions. Phosphonate is typically not considered a 
source of phosphorus for microbial growth in the Baltic Sea, but in the BONUS Blueprint project 
is has been found that Nodularia spumigena carried a phosphonate degrading (phn) gene 
cluster that is activitated during experimental conditions (Teikari et al. 2018).  
 
 
Monitoring 
The bacterioplankton metatranscriptome, i.e. the expressed bacterial genes, would in theory be 
intimately linked to the environmental status as bacteria respond rapidly to contemporary 
environmental conditions. We planned to also evaluate metatranscriptome data for predictions, 
but due to the high cost we were not able to conduct metatranscriptomics on a large enough 
number of samples to allow comparison with the metagenome data. Our metatranscriptome 
data, and those of others (e.g. Aylward et al. 2015), display short-term temporal changes in 
gene expression, like a diurnal cycle. This extensive short-term variability cannot be reconciled 
with the frequency of sampling in marine monitoring programs; i.e. weekly or monthly sample 
acquisition. Moreover, sampling for and work with RNA is challenging. Consequently, for 
reasons related to expression variability, cost, and handling difficulty, we find that DNA based 
analyses of microbial plankton is more relevant for monitoring purposes. 
 
As technology develops it also opens up new possibilities for DNA-based monitoring. Already 
today, cheap DNA sequencing machines are available that are as small as cell phones. It is 
reasonable to imagine that in a not-so-distant future buoys can be equipped with devices that 
autonomically samples and sequences DNA from the water and continously transfers 
sequences by satellite, enabling real-time monitoring of microbial taxa and encoded gene 
functions in local plankton communities. The intimate linkage between such data and 
environmental conditions demonstrated through the BONUS Blueprint project, and this report 
specifically, points to a potential high value of DNA sequencing methodology if applied in future 
marine plankton minotoring.  
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