A unique Malpighian tubule architecture in Tribolium castaneum informs the evolutionary origins of systemic osmoregulation in beetles

Research output: Contribution to journalJournal articleResearchpeer-review

  • Takashi Koyama
  • Muhammad Tayyib Naseem
  • Dennis Kolosov
  • Camilla Trang Vo
  • Duncan Mahon
  • Amanda Sofie Seger Jakobsen
  • Rasmus Lycke Jensen
  • Barry Denholm
  • Michael O'Donnell
  • Halberg, Kenneth Veland

Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.

Original languageEnglish
Article numbere2023314118
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number14
Number of pages12
ISSN0027-8424
DOIs
Publication statusPublished - 2021

Bibliographical note

Copyright © 2021 the Author(s). Published by PNAS.

ID: 259452019