Characteristic properties of proteins from pre-ecdysial cuticle of larvae and pupae of the mealworm Tenebrio molitor

Research output: Contribution to journalJournal articleResearchpeer-review

  • Svend Olav Andersen

Proteins extracted from the cuticle of pharate larvae and pupae of the mealworm Tenebrio molitor are more soluble at low temperatures than at higher temperatures, a behaviour characteristic of hydrophobic proteins. When the temperature of an unfractionated cuticular extract is raised from 4 to 25 °C the solution becomes turbid, droplets of a heavy, protein-rich phase are formed, which gradually settles, leaving an upper protein-poor phase, indicating that the aggregation process is a coacervation. The aggregation of the dissolved cuticular proteins is influenced by changes in temperature, pH, and ionic strength. The process has been studied by measuring development of turbidity in unfractionated cuticular extracts and in solutions of three purified proteins from Tenebrio pharate larvae and pupae (TmLPCP-A1a, TmLPCP-E1a, and TmLPCP-G1a), while temperature, pH or ionic strength of the solutions were varied. Protein aggregation was also studied by determination of changes in fluorescence intensity, when the hydrophobicity probe, 8-anilinonaphthalenesulfonic acid (ANS) was added to solutions of the cuticular proteins. Only when the protein solutions had developed a measurable turbidity was an increase in ANS-fluorescence observed, indicating formation of tightly packed clusters of hydrophobic amino acid residues during aggregation.

The temperature range for aggregation depends upon protein concentration: the higher the concentration the lower and more narrow is the temperature range within which aggregation occurs. The tendency for the individual cuticular proteins to aggregate is most pronounced near their isoelectric points, and most of the cuticular proteins have alkaline isoelectric points. The influence of salts on the tendency of the proteins to aggregate varies among the proteins and depends upon how close they are to their isoelectric point. A solution containing both protein TmLPCP-A1a and TmLPCP-E1a becomes more turbid and develops a more intense ANS-fluorescence when warmed from 10 to 30 °C than corresponding to the sum of measurements performed on separate solutions of the two proteins, indicating that the two proteins interact during aggregation.

The Tenebrio larval/pupal cuticular proteins are characterized by an abundance of hydrophobic amino acid residues, and especially their contents of alanine and proline are high. The behaviour of the cuticular proteins in solution resembles that of another hydrophobic protein, tropoelastin, and it seems reasonable to suggest that similar interactions govern the folding and aggregation of the peptide chains in the two types of proteins. The proline and alanine rich chain segments in the pharate cuticular proteins are suggested to form a series of beta-turns and to fold into a relatively open structure at low temperatures, giving water access to the hydrophobic residues and making the proteins water soluble. At increased temperatures the structure of the ordered water layer surrounding the hydrophobic groups breaks down, and the peptide chains tend to collapse into a more closed structure and to interact more tightly with hydrophobic regions in neighbouring molecules. In dilute solutions in the test tube this results in aggregation and precipitation of the proteins; in intact, pharate cuticle at ambient temperatures the proteins will preferably be in an aggregated, easily dissociated state. Accordingly, small changes in intercuticular pH and ionic strength can produce pronounced changes in the mechanical properties of unsclerotized solid cuticle by interference with protein interactions, in agreement with reports that some cuticles undergo plasticization during and/or immediately after ecdysis.

Original languageEnglish
JournalInsect Biochemistry and Molecular Biology
Volume32
Issue number9
Pages (from-to)1077-1087
ISSN0965-1748
DOIs
Publication statusPublished - 2002

ID: 132786