Disruption of the gene encoding the acyl-CoA-binding protein (ACB1) perturbs acyl-CoA metabolism in Saccharomyces cerevisiae

Research output: Contribution to journalJournal articlepeer-review

The ACB1 gene encoding the acyl-CoA-binding protein (ACBP) was disrupted in Saccharomyces cerevisiae. The disruption did not affect the growth rate on glucose but reduced the growth rate on ethanol slightly. Although the growth rate of the acb1-disrupted cells was unaffected or only slightly affected, the acb1-disrupted strain was unable to compete with wild type cells when grown in mixed culture. The acyl-CoA level in the disrupted cells was increased from 1.5- to 2.5-fold during exponential growth. The increase in the acyl-CoA level was caused solely by an increase in de novo synthesized stearoyl-CoA. Experiments with purified yeast fatty acid synthetase show that it will synthesize long chain acyl-CoAs in the absence of acyl-CoA-binding protein. The addition of ACBP to the incubation medium resulted in a dramatic decrease in the chain length of the synthesized acyl-CoA esters. Despite the fact that the stearoyl-CoA concentration was increased 7-fold and the Delta9-desaturase mRNA level was increased 3-fold, the synthesis of oleic acid was unchanged in the acb1-disrupted strain. The results strongly indicate that ACBP in yeast is involved in the transport of newly synthesized acyl-CoA esters from the fatty acid synthetase to acyl-CoA-consuming processes.
Original languageEnglish
JournalJournal of Biological Chemistry
Volume271
Issue number37
Pages (from-to)22514-21
Number of pages7
ISSN0021-9258
Publication statusPublished - 1996
Externally publishedYes

Bibliographical note

Keywords: Acetic Acid; Acyl Coenzyme A; Acyl-CoA Dehydrogenase, Long-Chain; Blotting, Northern; Carrier Proteins; Diazepam Binding Inhibitor; Ethanol; Fatty Acid Desaturases; Fatty Acid Synthetase Complex; Glucose; Lipid Metabolism; Oleic Acid; Saccharomyces cerevisiae

ID: 11253748