Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways

Research output: Contribution to journalJournal articlepeer-review

Standard

Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. / Berge, K; Tronstad, K J; Flindt, E N; Rasmussen, T H; Madsen, L; Kristiansen, K; Berge, R K.

In: Carcinogenesis, Vol. 22, No. 11, 2001, p. 1747-55.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Berge, K, Tronstad, KJ, Flindt, EN, Rasmussen, TH, Madsen, L, Kristiansen, K & Berge, RK 2001, 'Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways', Carcinogenesis, vol. 22, no. 11, pp. 1747-55. <http://carcin.oxfordjournals.org/cgi/content/abstract/22/11/1747>

APA

Berge, K., Tronstad, K. J., Flindt, E. N., Rasmussen, T. H., Madsen, L., Kristiansen, K., & Berge, R. K. (2001). Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. Carcinogenesis, 22(11), 1747-55. http://carcin.oxfordjournals.org/cgi/content/abstract/22/11/1747

Vancouver

Berge K, Tronstad KJ, Flindt EN, Rasmussen TH, Madsen L, Kristiansen K et al. Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. Carcinogenesis. 2001;22(11):1747-55.

Author

Berge, K ; Tronstad, K J ; Flindt, E N ; Rasmussen, T H ; Madsen, L ; Kristiansen, K ; Berge, R K. / Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways. In: Carcinogenesis. 2001 ; Vol. 22, No. 11. pp. 1747-55.

Bibtex

@article{7c541d600fb811de8478000ea68e967b,
title = "Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways",
abstract = "The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in fatty acid metabolism and energy homeostasis. The PPARs also play crucial roles in the control of cellular growth and differentiation. Especially, the recently emerged concept of ligand-dependent PPARgamma-mediated inhibition of cancer cell proliferation through induction of G(1)-phase arrest and differentiation is of clinical interest to cancer therapy. Tetradecylthioacetic acid (TTA) is a sulphur-substituted saturated fatty acid analog with unique biochemical properties. In this study, we investigated the effects of TTA-administration on cell proliferation in glioma cancer models. The rat glioma cell line BT4Cn, whether grown in culture or implanted in rats, expressed significant levels of PPARgamma and PPARdelta, with PPARgamma being the predominant PPAR subtype. In BT4Cn cells, TTA activated all PPAR subtypes in a dose-dependent manner. In cell culture experiments, the PPARgamma-selective ligand BRL49653 moderately inhibited growth of BT4Cn cells, whereas administration of TTA resulted in a marked growth inhibition. Administration of the PPARgamma-selective antagonist GW9662 abolished BRL49653-induced growth inhibition, but only marginally reduced the effect of TTA. TTA reduced tumor growth and increased the survival time of rats with implanted BT4Cn tumor. TTA-induced apoptosis in BT4Cn cells, and the administration of TTA led to cytochrome c release from mitochondria and increased the glutathione content in glioma cells. In conclusion, our results indicate that TTA inhibits proliferation of glioma cancer cells through both PPARgamma-dependent and PPARgamma-independent pathways, of which the latter appears to predominate.",
author = "K Berge and Tronstad, {K J} and Flindt, {E N} and Rasmussen, {T H} and L Madsen and K Kristiansen and Berge, {R K}",
note = "Keywords: Animals; Antioxidants; Apoptosis; Blotting, Western; Brain Neoplasms; Cell Division; Cytochrome c Group; DNA Primers; Gene Expression; Glioma; Glutathione; Ligands; Male; Microscopy, Fluorescence; Mitochondria; Plasmids; Rats; Receptors, Cytoplasmic and Nuclear; Reverse Transcriptase Polymerase Chain Reaction; Sulfides; Transcription Factors; Transfection; Tumor Cells, Cultured",
year = "2001",
language = "English",
volume = "22",
pages = "1747--55",
journal = "Carcinogenesis",
issn = "0143-3334",
publisher = "Oxford University Press",
number = "11",

}

RIS

TY - JOUR

T1 - Tetradecylthioacetic acid inhibits growth of rat glioma cells ex vivo and in vivo via PPAR-dependent and PPAR-independent pathways

AU - Berge, K

AU - Tronstad, K J

AU - Flindt, E N

AU - Rasmussen, T H

AU - Madsen, L

AU - Kristiansen, K

AU - Berge, R K

N1 - Keywords: Animals; Antioxidants; Apoptosis; Blotting, Western; Brain Neoplasms; Cell Division; Cytochrome c Group; DNA Primers; Gene Expression; Glioma; Glutathione; Ligands; Male; Microscopy, Fluorescence; Mitochondria; Plasmids; Rats; Receptors, Cytoplasmic and Nuclear; Reverse Transcriptase Polymerase Chain Reaction; Sulfides; Transcription Factors; Transfection; Tumor Cells, Cultured

PY - 2001

Y1 - 2001

N2 - The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in fatty acid metabolism and energy homeostasis. The PPARs also play crucial roles in the control of cellular growth and differentiation. Especially, the recently emerged concept of ligand-dependent PPARgamma-mediated inhibition of cancer cell proliferation through induction of G(1)-phase arrest and differentiation is of clinical interest to cancer therapy. Tetradecylthioacetic acid (TTA) is a sulphur-substituted saturated fatty acid analog with unique biochemical properties. In this study, we investigated the effects of TTA-administration on cell proliferation in glioma cancer models. The rat glioma cell line BT4Cn, whether grown in culture or implanted in rats, expressed significant levels of PPARgamma and PPARdelta, with PPARgamma being the predominant PPAR subtype. In BT4Cn cells, TTA activated all PPAR subtypes in a dose-dependent manner. In cell culture experiments, the PPARgamma-selective ligand BRL49653 moderately inhibited growth of BT4Cn cells, whereas administration of TTA resulted in a marked growth inhibition. Administration of the PPARgamma-selective antagonist GW9662 abolished BRL49653-induced growth inhibition, but only marginally reduced the effect of TTA. TTA reduced tumor growth and increased the survival time of rats with implanted BT4Cn tumor. TTA-induced apoptosis in BT4Cn cells, and the administration of TTA led to cytochrome c release from mitochondria and increased the glutathione content in glioma cells. In conclusion, our results indicate that TTA inhibits proliferation of glioma cancer cells through both PPARgamma-dependent and PPARgamma-independent pathways, of which the latter appears to predominate.

AB - The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in fatty acid metabolism and energy homeostasis. The PPARs also play crucial roles in the control of cellular growth and differentiation. Especially, the recently emerged concept of ligand-dependent PPARgamma-mediated inhibition of cancer cell proliferation through induction of G(1)-phase arrest and differentiation is of clinical interest to cancer therapy. Tetradecylthioacetic acid (TTA) is a sulphur-substituted saturated fatty acid analog with unique biochemical properties. In this study, we investigated the effects of TTA-administration on cell proliferation in glioma cancer models. The rat glioma cell line BT4Cn, whether grown in culture or implanted in rats, expressed significant levels of PPARgamma and PPARdelta, with PPARgamma being the predominant PPAR subtype. In BT4Cn cells, TTA activated all PPAR subtypes in a dose-dependent manner. In cell culture experiments, the PPARgamma-selective ligand BRL49653 moderately inhibited growth of BT4Cn cells, whereas administration of TTA resulted in a marked growth inhibition. Administration of the PPARgamma-selective antagonist GW9662 abolished BRL49653-induced growth inhibition, but only marginally reduced the effect of TTA. TTA reduced tumor growth and increased the survival time of rats with implanted BT4Cn tumor. TTA-induced apoptosis in BT4Cn cells, and the administration of TTA led to cytochrome c release from mitochondria and increased the glutathione content in glioma cells. In conclusion, our results indicate that TTA inhibits proliferation of glioma cancer cells through both PPARgamma-dependent and PPARgamma-independent pathways, of which the latter appears to predominate.

M3 - Journal article

C2 - 11698335

VL - 22

SP - 1747

EP - 1755

JO - Carcinogenesis

JF - Carcinogenesis

SN - 0143-3334

IS - 11

ER -

ID: 11254786