Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering

Research output: Contribution to journalJournal articleResearchpeer-review

Through genome-wide transcript analysis of a reference strain and two recombinant Saccharomyces cerevisiae strains with different rates of galactose uptake, we obtained information about the global transcriptional response to metabolic engineering of the GAL gene regulatory network. One of the recombinant strains overexpressed the gene encoding the transcriptional activator Gal4, and in the other strain the genes encoding Gal80, Gal6, and Mig1, which are negative regulators of the GAL system, were deleted. Even though the galactose uptake rates were significantly different in the three strains, we surprisingly did not find any significant changes in the expression of the genes encoding the enzymes catalyzing the first steps of the pathway (i.e., the genes encoding Gal2, Gal1, Gal7, and Gal10). We did, however, find that PGM2, encoding the major isoenzyme of phosphoglucomutase, was slightly up-regulated in the two recombinant strains with higher galactose uptake rates. This indicated that PGM2 is a target for overexpression in terms of increasing the flux through the Leloir pathway, and through overexpression of PGM2 the galactose uptake rate could be increased by 70% compared to that of the reference strain. Based on our findings, we concluded that phosphoglucomutase plays a key role in controlling the flux through the Leloir pathway, probably due to increased conversion of glucose-1-phosphate to glucose-6-phosphate. This conclusion was supported by measurements of sugar phosphates, which showed that there were increased concentrations of glucose-6-phosphate, galactose-6-phosphate, and fructose-6-phosphate in the strain construct overexpressing PGM2.

Original languageEnglish
JournalApplied and Environmental Microbiology
Volume71
Issue number11
Pages (from-to)6465-6472
Number of pages8
ISSN0099-2240
DOIs
Publication statusPublished - 1 Nov 2005
Externally publishedYes

ID: 239905139