Acclimation of subarctic vegetation to warming and increased cloudiness

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 3,41 MB, PDF-dokument

Subarctic ecosystems are exposed to elevated temperatures and increased cloudiness in a changing climate with potentially important effects on vegetation structure, composition, and ecosystem functioning. We investigated the individual and combined effects of warming and increased cloudiness on vegetation greenness and cover in mesocosms from two tundra and one palsa mire ecosystems kept under strict environmental control in climate chambers. We also investigated leaf anatomical and biochemical traits of four dominant vascular plant species (Empetrum hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-idaea, and Rubus chamaemorus). Vegetation greenness increased in response to warming in all sites and in response to increased cloudiness in the tundra sites but without associated increases in vegetation cover or biomass, except that E. hermaphroditum biomass increased under warming. The combined warming and increased cloudiness treatment had an additive effect on vegetation greenness in all sites. It also increased the cover of graminoids and forbs in one of the tundra sites. Warming increased leaf dry mass per area of V. myrtillus and R. chamaemorus, and glandular trichome density of V. myrtillus and decreased spongy intercellular space of E. hermaphroditum and V. vitis-idaea. Increased cloudiness decreased leaf dry mass per area of V. myrtillus, palisade thickness of E. hermaphroditum, and stomata density of E. hermaphroditum and V. vitis-idaea, and increased leaf area and epidermis thickness of V. myrtillus, leaf shape index and nitrogen of E. hermaphroditum, and palisade intercellular space of V. vitis-idaea. The combined treatment caused thinner leaves and decreased leaf carbon for V. myrtillus, and increased leaf chlorophyll of E. hermaphroditum. We show that under future warmer increased cloudiness conditions in the Subarctic (as simulated in our experiment), vegetation composition and distribution will change, mostly dominated by graminoids and forbs. These changes will depend on the responses of leaf anatomical and biochemical traits and will likely impact carbon gain and primary productivity and abiotic and biotic stress tolerance.
OriginalsprogEngelsk
Artikelnummere10130
TidsskriftPlant-Environment Interactions
Vol/bind5
Udgave nummer1
Antal sider16
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
This research was supported by the Finnish Cultural Foundation, North‐Savo Regional Fund, the Kuopio Naturalists' Society (KLYY) and the Olvi Foundation. We thank Virpi Miettinen (SIB‐labs, University of Eastern Finland) and Timo Oksanen (Department of Environmental and Biological Sciences, University of Eastern Finland) for technical assistance. We also thank Jaana Rissanen, Hanne Vainikainen, and Sirpa Martikainen (Department of Environmental and Biological Sciences, University of Eastern Finland) for their laboratory assistance. Thanks to Hem Raj Bhattarai for assisting in mesocosm collection and to Hanna Kenttä for her assistance in the final harvest sampling. We are grateful to the University of Eastern Finland for providing the opportunity to work in a cordial atmosphere.

Publisher Copyright:
© 2023 The Authors. Plant-Environment Interactions published by New Phytologist Foundation and John Wiley & Sons Ltd.

ID: 375205785