Antibody accessibility determines location of spike surface mutations in SARS-CoV-2 variants

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,64 MB, PDF-dokument

The steady emergence of SARS-CoV-2 variants gives us a real-time view of the interplay between viral evolution and the host immune defense. The spike protein of SARS-CoV-2 is the primary target of antibodies. Here, we show that steric accessibility to antibodies provides a strong predictor of mutation activity in the spike protein of SARS-CoV-2 variants, including Omicron. We introduce an antibody accessibility score (AAS) that accounts for the steric shielding effect of glycans at the surface of spike. We find that high values of the AAS correlate strongly with the sites of mutations in the spike proteins of newly emerging SARS-CoV-2 variants. We use the AAS to assess the escapability of variant spike proteins, i.e., their ability to escape antibody-based immune responses. The high calculated escapability of the Omicron variant BA.5 with respect to both wild-type (WT) vaccination and BA.1 infection is consistent with its rapid spread despite high rates of vaccination and prior infection with earlier variants. We calculated the AAS from structural and molecular dynamics simulation data that were available early in the pandemic, in the spring of 2020. The AAS thus allows us to prospectively assess the ability of variant spike proteins to escape antibody-based immune responses and to pinpoint regions of expected mutation activity in future variants.
OriginalsprogEngelsk
Artikelnummere1010822
TidsskriftPLOS Computational Biology
Vol/bind19
Udgave nummer1
Antal sider15
ISSN1553-734X
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
© 2023 von Bülow et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ID: 339257695