Mapping the degradation pathway of a disease-linked aspartoacylase variant

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Mapping the degradation pathway of a disease-linked aspartoacylase variant. / Gersing, Sarah K.; Wang, Yong; Grønbæk-Thygesen, Martin; Kampmeyer, Caroline; Clausen, Lene; Willemoës, Martin; Andréasson, Claes; Stein, Amelie; Lindorff-Larsen, Kresten; Hartmann-Petersen, Rasmus.

I: PLOS Genetics, Bind 17, Nr. 4, e1009539, 2021.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Gersing, SK, Wang, Y, Grønbæk-Thygesen, M, Kampmeyer, C, Clausen, L, Willemoës, M, Andréasson, C, Stein, A, Lindorff-Larsen, K & Hartmann-Petersen, R 2021, 'Mapping the degradation pathway of a disease-linked aspartoacylase variant', PLOS Genetics, bind 17, nr. 4, e1009539. https://doi.org/10.1371/journal.pgen.1009539

APA

Gersing, S. K., Wang, Y., Grønbæk-Thygesen, M., Kampmeyer, C., Clausen, L., Willemoës, M., Andréasson, C., Stein, A., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2021). Mapping the degradation pathway of a disease-linked aspartoacylase variant. PLOS Genetics, 17(4), [e1009539]. https://doi.org/10.1371/journal.pgen.1009539

Vancouver

Gersing SK, Wang Y, Grønbæk-Thygesen M, Kampmeyer C, Clausen L, Willemoës M o.a. Mapping the degradation pathway of a disease-linked aspartoacylase variant. PLOS Genetics. 2021;17(4). e1009539. https://doi.org/10.1371/journal.pgen.1009539

Author

Gersing, Sarah K. ; Wang, Yong ; Grønbæk-Thygesen, Martin ; Kampmeyer, Caroline ; Clausen, Lene ; Willemoës, Martin ; Andréasson, Claes ; Stein, Amelie ; Lindorff-Larsen, Kresten ; Hartmann-Petersen, Rasmus. / Mapping the degradation pathway of a disease-linked aspartoacylase variant. I: PLOS Genetics. 2021 ; Bind 17, Nr. 4.

Bibtex

@article{f08f0f935e1a49808403041520a42c6e,
title = "Mapping the degradation pathway of a disease-linked aspartoacylase variant",
abstract = "Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.",
author = "Gersing, {Sarah K.} and Yong Wang and Martin Gr{\o}nb{\ae}k-Thygesen and Caroline Kampmeyer and Lene Clausen and Martin Willemo{\"e}s and Claes Andr{\'e}asson and Amelie Stein and Kresten Lindorff-Larsen and Rasmus Hartmann-Petersen",
year = "2021",
doi = "10.1371/journal.pgen.1009539",
language = "English",
volume = "17",
journal = "P L o S Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "4",

}

RIS

TY - JOUR

T1 - Mapping the degradation pathway of a disease-linked aspartoacylase variant

AU - Gersing, Sarah K.

AU - Wang, Yong

AU - Grønbæk-Thygesen, Martin

AU - Kampmeyer, Caroline

AU - Clausen, Lene

AU - Willemoës, Martin

AU - Andréasson, Claes

AU - Stein, Amelie

AU - Lindorff-Larsen, Kresten

AU - Hartmann-Petersen, Rasmus

PY - 2021

Y1 - 2021

N2 - Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.

AB - Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.

U2 - 10.1371/journal.pgen.1009539

DO - 10.1371/journal.pgen.1009539

M3 - Journal article

C2 - 33914734

VL - 17

JO - P L o S Genetics

JF - P L o S Genetics

SN - 1553-7390

IS - 4

M1 - e1009539

ER -

ID: 261213036