Above-belowground interactions govern the course and impact of biological invasions

Research output: Contribution to journalJournal articleResearchpeer-review

Introduction of exotic organisms that subsequently become invasive is considered a serious threat to global biodiversity, and both scientists and nature-conservationists attempt to find explanations and means to meet this challenge. This requires a thorough analysis of the invasion phenomenon in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above-belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis of invasion must include a temporal context. Invasions will typically include an initial acute phase, where the invader expands its territory and a later chronic phase where equilibrium is re-established. Many studies fail to make this distinction, which is unfortunate as it makes it impossible to thoroughly understand the invasion of focus. Thus, we claim that invasions fall into two broad categories. Some invasions irreversibly change pools and pathways of matter and energy in the invaded system; even if the abundance of the invader is reduced or it is completely removed, the system will not return to its former state. We use earthworm invasion in North America as a particular conspicuous example of invasive species that irreversibly change ecosystems. However, invasions may also be reversible, where the exotic organism dominates the system for a period, but in the longer term it either disappears, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original.

Original languageEnglish
JournalA O B Plants
Number of pages11
Publication statusPublished - 2015

Number of downloads are based on statistics from Google Scholar and www.ku.dk

No data available

ID: 137065294