Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma?

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma? / Winnicki, Martin Holm; Dunn, Robert R.; Winther-Jensen, Matilde; Jess, Tine; Allin, Kristine Højgaard; Bruun, Hans Henrik.

In: Science of the Total Environment, Vol. 850, 157853, 2022.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Winnicki, MH, Dunn, RR, Winther-Jensen, M, Jess, T, Allin, KH & Bruun, HH 2022, 'Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma?', Science of the Total Environment, vol. 850, 157853. https://doi.org/10.1016/j.scitotenv.2022.157853

APA

Winnicki, M. H., Dunn, R. R., Winther-Jensen, M., Jess, T., Allin, K. H., & Bruun, H. H. (2022). Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma? Science of the Total Environment, 850, [157853]. https://doi.org/10.1016/j.scitotenv.2022.157853

Vancouver

Winnicki MH, Dunn RR, Winther-Jensen M, Jess T, Allin KH, Bruun HH. Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma? Science of the Total Environment. 2022;850. 157853. https://doi.org/10.1016/j.scitotenv.2022.157853

Author

Winnicki, Martin Holm ; Dunn, Robert R. ; Winther-Jensen, Matilde ; Jess, Tine ; Allin, Kristine Højgaard ; Bruun, Hans Henrik. / Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma?. In: Science of the Total Environment. 2022 ; Vol. 850.

Bibtex

@article{de00673c17ea45b3b9cb7183ec175c34,
title = "Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma?",
abstract = "The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995–2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.",
author = "Winnicki, {Martin Holm} and Dunn, {Robert R.} and Matilde Winther-Jensen and Tine Jess and Allin, {Kristine H{\o}jgaard} and Bruun, {Hans Henrik}",
note = "Publisher Copyright: {\textcopyright} 2022 The Authors",
year = "2022",
doi = "10.1016/j.scitotenv.2022.157853",
language = "English",
volume = "850",
journal = "Science of the Total Environment",
issn = "0048-9697",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Does childhood exposure to biodiverse greenspace reduce the risk of developing asthma?

AU - Winnicki, Martin Holm

AU - Dunn, Robert R.

AU - Winther-Jensen, Matilde

AU - Jess, Tine

AU - Allin, Kristine Højgaard

AU - Bruun, Hans Henrik

N1 - Publisher Copyright: © 2022 The Authors

PY - 2022

Y1 - 2022

N2 - The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995–2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.

AB - The prevalence of inflammatory diseases is increasing in populations throughout the industrialized world. An increasing proportion of human populations grow up and live in urban areas, probably with reduced exposure to biodiversity, including diverse soil biotas. Decreased exposure to microorganisms from natural environments, in particular in early childhood, has been hypothesized to hamper development of the human immune system and lead to increasing risks of inflammatory diseases, such as asthma. We investigated 40,249 Danish individuals born 1995–2015. Percentage greenspace was assessed in a 2 km buffer around home addresses of individuals. The Danish Biodiversity Map, charting occurrence density of red-listed animals, plants and macrofungi, was used as a proxy for multi-taxon biodiversity. For asthma defined broadly, we found no evidence of decreasing risk of developing asthma with higher levels of biodiversity, while greenspace exposure was associated with higher risk of asthma. In contrast, exposure to total and biodiverse greenspace was associated with reduced risk of developing severe asthma. Exposure to farmland, which in Denmark is heavily industrialized cropland, also showed association with elevated risk of developing asthma, even at relatively low agricultural landcover. In the subset of children growing up in highly urbanized settings, we found high exposures to urban greenspace to be associated with reduced risk of developing asthma. Our results lend limited support to the hypothesis that childhood exposure to biodiverse environments reduces the risk of acquiring inflammatory diseases later in life. However, access to urban greenspace, such as parks, which typically harbour low levels of biodiversity, seems to reduce asthma risk, potentially through exposure to common soil microbiota. Our results suggest that effects of biodiversity exposure on human health is set by a balance between ecosystem services and disservices and that biodiversity conservation is best motivated with other arguments than reduction of risks from inflammatory diseases.

U2 - 10.1016/j.scitotenv.2022.157853

DO - 10.1016/j.scitotenv.2022.157853

M3 - Journal article

C2 - 35940273

AN - SCOPUS:85136000150

VL - 850

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

M1 - 157853

ER -

ID: 319803805