Entanglement-Enhanced Magnetic Induction Tomography

Research output: Contribution to journalLetterResearchpeer-review

Standard

Entanglement-Enhanced Magnetic Induction Tomography. / Zheng, Wenqiang; Wang, Hengyan ; Schmieg, Rebecca; Oesterle, Alan; Polzik, Eugene Simon.

In: Physical Review Letters, Vol. 130, No. 20, 203602, 19.05.2023.

Research output: Contribution to journalLetterResearchpeer-review

Harvard

Zheng, W, Wang, H, Schmieg, R, Oesterle, A & Polzik, ES 2023, 'Entanglement-Enhanced Magnetic Induction Tomography', Physical Review Letters, vol. 130, no. 20, 203602. https://doi.org/10.1103/PhysRevLett.130.203602

APA

Zheng, W., Wang, H., Schmieg, R., Oesterle, A., & Polzik, E. S. (2023). Entanglement-Enhanced Magnetic Induction Tomography. Physical Review Letters, 130(20), [203602]. https://doi.org/10.1103/PhysRevLett.130.203602

Vancouver

Zheng W, Wang H, Schmieg R, Oesterle A, Polzik ES. Entanglement-Enhanced Magnetic Induction Tomography. Physical Review Letters. 2023 May 19;130(20). 203602. https://doi.org/10.1103/PhysRevLett.130.203602

Author

Zheng, Wenqiang ; Wang, Hengyan ; Schmieg, Rebecca ; Oesterle, Alan ; Polzik, Eugene Simon. / Entanglement-Enhanced Magnetic Induction Tomography. In: Physical Review Letters. 2023 ; Vol. 130, No. 20.

Bibtex

@article{f6dff53eab134d70ac10155f609129bd,
title = "Entanglement-Enhanced Magnetic Induction Tomography",
abstract = "Magnetic induction tomography (MIT) is a sensing protocol exploring conductive objects via their response to radio-frequency magnetic fields. MIT is used in nondestructive testing ranging from geophysics to medical applications. Atomic magnetometers, employed as MIT sensors, allow for significant improvement of the MIT sensitivity and for exploring its quantum limits. Here, we propose and verify a quantum-enhanced version of the atomic MIT by combining it with conditional spin squeezing and stroboscopic backaction evasion. We use this quantum enhancement to demonstrate sensitivity beyond the standard quantum limits of one-dimensional quantum MIT detecting a conductive sample.",
keywords = "Faculty of Science, Quantum Optics, Magnetic induction tomography, Quantum-enhanced sensing, Light-atom interaction",
author = "Wenqiang Zheng and Hengyan Wang and Rebecca Schmieg and Alan Oesterle and Polzik, {Eugene Simon}",
year = "2023",
month = may,
day = "19",
doi = "10.1103/PhysRevLett.130.203602",
language = "English",
volume = "130",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "20",

}

RIS

TY - JOUR

T1 - Entanglement-Enhanced Magnetic Induction Tomography

AU - Zheng, Wenqiang

AU - Wang, Hengyan

AU - Schmieg, Rebecca

AU - Oesterle, Alan

AU - Polzik, Eugene Simon

PY - 2023/5/19

Y1 - 2023/5/19

N2 - Magnetic induction tomography (MIT) is a sensing protocol exploring conductive objects via their response to radio-frequency magnetic fields. MIT is used in nondestructive testing ranging from geophysics to medical applications. Atomic magnetometers, employed as MIT sensors, allow for significant improvement of the MIT sensitivity and for exploring its quantum limits. Here, we propose and verify a quantum-enhanced version of the atomic MIT by combining it with conditional spin squeezing and stroboscopic backaction evasion. We use this quantum enhancement to demonstrate sensitivity beyond the standard quantum limits of one-dimensional quantum MIT detecting a conductive sample.

AB - Magnetic induction tomography (MIT) is a sensing protocol exploring conductive objects via their response to radio-frequency magnetic fields. MIT is used in nondestructive testing ranging from geophysics to medical applications. Atomic magnetometers, employed as MIT sensors, allow for significant improvement of the MIT sensitivity and for exploring its quantum limits. Here, we propose and verify a quantum-enhanced version of the atomic MIT by combining it with conditional spin squeezing and stroboscopic backaction evasion. We use this quantum enhancement to demonstrate sensitivity beyond the standard quantum limits of one-dimensional quantum MIT detecting a conductive sample.

KW - Faculty of Science

KW - Quantum Optics

KW - Magnetic induction tomography

KW - Quantum-enhanced sensing

KW - Light-atom interaction

U2 - 10.1103/PhysRevLett.130.203602

DO - 10.1103/PhysRevLett.130.203602

M3 - Letter

C2 - 37267567

VL - 130

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 20

M1 - 203602

ER -

ID: 347694579