Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs

Research output: Contribution to journalJournal articleResearchpeer-review

Environmental changes are likely to alter the chemical composition of plant tissues, including content and concentrations of secondary compounds, and thereby affect the food sources of herbivores. After 10 years of experimental increase of temperature, nutrient levels and light attenuation in a sub-arctic, alpine ecosystem, we investigated the effects on carbon based secondary compounds (CBSC) and nitrogen in one dominant deciduous dwarf shrub, Salix herbacea × polaris and two dominant evergreen dwarf shrubs, Cassiope tetragona and Vaccinium vitis-idaea throughout one growing season. The main aims were to compare the seasonal course and treatment effects on CBSC among the species, life forms and leaf cohorts and to examine whether the responses in different CBSC were consistent across compounds. The changes in leaf chemistry both during the season and in response to the treatments were higher in S. herbacea × polaris than in the corresponding current year's leaf cohort of the evergreen C. tetragona. The changes were also much higher than in the 1-year-old leaves of the two evergreens probably due to differences in dilution and turnover of CBSC in growing and mature leaves paired with different rates of allocation. Most low molecular weight phenolics in the current year's leaves decreased in all treatments. Condensed tannins and the tannin-to-N ratio, however, either increased or decreased, and the strength and even direction of the responses varied among the species and leaf cohorts, supporting views of influential factors additional to resource-based or developmental controls, as e.g. species specific or genetic controls of CBSC. The results indicate that there is no common response to environmental changes across species and substances. However, the pronounced treatment responses imply that the quality of the herbivore forage is likely to be strongly affected in a changing arctic environment, although both the direction and strength of the responses will be different among plant species, tissue types and substances.
Original languageEnglish
JournalOecologia
Volume147
Issue number1
Pages (from-to)1-11
ISSN0029-8549
DOIs
Publication statusPublished - 2006

Bibliographical note

Keywords Arctic and alpine ecosystem - Environmental change - Plant responses - Secondary compounds

ID: 1122118