On the origin of new genes in Drosophila

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

On the origin of new genes in Drosophila. / Zhou, Qi; Zhang, Guojie; Zhang, Yue; Xu, Shiyu; Zhao, Ruoping; Zhan, Zubing; Li, Xin; Ding, Yun; Yang, Shuang; Wang, Wen.

In: Genome Research, Vol. 18, No. 9, 2008, p. 1446-1455.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Zhou, Q, Zhang, G, Zhang, Y, Xu, S, Zhao, R, Zhan, Z, Li, X, Ding, Y, Yang, S & Wang, W 2008, 'On the origin of new genes in Drosophila', Genome Research, vol. 18, no. 9, pp. 1446-1455. https://doi.org/10.1101/gr.076588.108

APA

Zhou, Q., Zhang, G., Zhang, Y., Xu, S., Zhao, R., Zhan, Z., Li, X., Ding, Y., Yang, S., & Wang, W. (2008). On the origin of new genes in Drosophila. Genome Research, 18(9), 1446-1455. https://doi.org/10.1101/gr.076588.108

Vancouver

Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z et al. On the origin of new genes in Drosophila. Genome Research. 2008;18(9):1446-1455. https://doi.org/10.1101/gr.076588.108

Author

Zhou, Qi ; Zhang, Guojie ; Zhang, Yue ; Xu, Shiyu ; Zhao, Ruoping ; Zhan, Zubing ; Li, Xin ; Ding, Yun ; Yang, Shuang ; Wang, Wen. / On the origin of new genes in Drosophila. In: Genome Research. 2008 ; Vol. 18, No. 9. pp. 1446-1455.

Bibtex

@article{a6b93c51e9b54a32abcd706727771dcd,
title = "On the origin of new genes in Drosophila",
abstract = "Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.",
keywords = "Animals, Chimerism, Drosophila melanogaster, Evolution, Molecular, Genes, Duplicate, Genes, Insect, Genome, Insect, Phylogeny, Tandem Repeat Sequences",
author = "Qi Zhou and Guojie Zhang and Yue Zhang and Shiyu Xu and Ruoping Zhao and Zubing Zhan and Xin Li and Yun Ding and Shuang Yang and Wen Wang",
year = "2008",
doi = "10.1101/gr.076588.108",
language = "English",
volume = "18",
pages = "1446--1455",
journal = "Genome Research",
issn = "1088-9051",
publisher = "Cold Spring Harbor Laboratory Press",
number = "9",

}

RIS

TY - JOUR

T1 - On the origin of new genes in Drosophila

AU - Zhou, Qi

AU - Zhang, Guojie

AU - Zhang, Yue

AU - Xu, Shiyu

AU - Zhao, Ruoping

AU - Zhan, Zubing

AU - Li, Xin

AU - Ding, Yun

AU - Yang, Shuang

AU - Wang, Wen

PY - 2008

Y1 - 2008

N2 - Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.

AB - Several mechanisms have been proposed to account for the origination of new genes. Despite extensive case studies, the general principles governing this fundamental process are still unclear at the whole-genome level. Here, we unveil genome-wide patterns for the mutational mechanisms leading to new genes and their subsequent lineage-specific evolution at different time nodes in the Drosophila melanogaster species subgroup. We find that (1) tandem gene duplication has generated approximately 80% of the nascent duplicates that are limited to single species (D. melanogaster or Drosophila yakuba); (2) the most abundant new genes shared by multiple species (44.1%) are dispersed duplicates, and are more likely to be retained and be functional; (3) de novo gene origination from noncoding sequences plays an unexpectedly important role during the origin of new genes, and is responsible for 11.9% of the new genes; (4) retroposition is also an important mechanism, and had generated approximately 10% of the new genes; (5) approximately 30% of the new genes in the D. melanogaster species complex recruited various genomic sequences and formed chimeric gene structures, suggesting structure innovation as an important way to help fixation of new genes; and (6) the rate of the origin of new functional genes is estimated to be five to 11 genes per million years in the D. melanogaster subgroup. Finally, we survey gene frequencies among 19 globally derived strains for D. melanogaster-specific new genes and reveal that 44.4% of them show copy number polymorphisms within a population. In conclusion, we provide a panoramic picture for the origin of new genes in Drosophila species.

KW - Animals

KW - Chimerism

KW - Drosophila melanogaster

KW - Evolution, Molecular

KW - Genes, Duplicate

KW - Genes, Insect

KW - Genome, Insect

KW - Phylogeny

KW - Tandem Repeat Sequences

U2 - 10.1101/gr.076588.108

DO - 10.1101/gr.076588.108

M3 - Journal article

C2 - 18550802

VL - 18

SP - 1446

EP - 1455

JO - Genome Research

JF - Genome Research

SN - 1088-9051

IS - 9

ER -

ID: 43544661