Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents

Research output: Contribution to journalJournal articlepeer-review


Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.
Original languageEnglish
JournalCurrent Microbiology
Issue number3
Pages (from-to)250-258
Publication statusPublished - 8 Jul 2011
Externally publishedYes

Number of downloads are based on statistics from Google Scholar and

No data available

ID: 33762044