The evolution of multiple mating in army ants

Research output: Contribution to journalJournal articleResearchpeer-review

The evolution of mating systems in eusocial Hymenoptera is constrained because females mate only during a brief period early in life, whereas inseminated queens and their stored sperm may live for decades. Considerable research effort during recent years has firmly established that obligate multiple mating has evolved only a few times: in Apis honeybees, Vespula wasps, Pogonomyrmex harvester ants, Atta and Acromyrmex leaf-cutting ants, the ant Cataglyphis cursor, and in at least some army ants. Here we provide estimates of queen-mating frequency for New World Neivamyrmex and Old World Aenictus species, which, compared to other army ants, have relatively small colonies and little size polymorphism among workers. To provide the first overall comparative analysis of the evolution of army ant mating systems, we combine these new results with previous estimates for African Dorylus and New World Eciton army ants, which have very large colonies and considerable worker polymorphism. We show that queens of Neivamyrmex and Aenictus mate with the same high numbers of males (usually ca. 10-20) as do queens of army ant species with very large colony sizes. We infer that multiple queen mating is ancestral in army ants and has evolved over 100 million years ago as part of the army ant adaptive syndrome. A comparison of army ants and honeybees suggests that mating systems in these two distantly related groups may have been convergently shaped by strikingly similar selective pressures.

Original languageEnglish
JournalEvolution
Volume61
Issue number2
Pages (from-to)413-422
Number of pages10
ISSN0014-3820
DOIs
Publication statusPublished - Feb 2007

    Research areas

  • Aenictinae, Aenictus, Colony fission, Diploid male load, Ecitoninae, Inbreeding, Neivamyrmex, Polyandry

ID: 379314987