The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. / Schneider, Lizette Marais; Adamski, Nikolai M.; Christensen, Caspar Elo; Stuart, David B.; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein, Penny.

In: Journal of Experimental Botany, Vol. 67, No. 9, 2016, p. 2715-2730.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Schneider, LM, Adamski, NM, Christensen, CE, Stuart, DB, Vautrin, S, Hansson, M, Uauy, C & von Wettstein, P 2016, 'The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes', Journal of Experimental Botany, vol. 67, no. 9, pp. 2715-2730. https://doi.org/10.1093/jxb/erw105

APA

Schneider, L. M., Adamski, N. M., Christensen, C. E., Stuart, D. B., Vautrin, S., Hansson, M., Uauy, C., & von Wettstein, P. (2016). The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. Journal of Experimental Botany, 67(9), 2715-2730. https://doi.org/10.1093/jxb/erw105

Vancouver

Schneider LM, Adamski NM, Christensen CE, Stuart DB, Vautrin S, Hansson M et al. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. Journal of Experimental Botany. 2016;67(9):2715-2730. https://doi.org/10.1093/jxb/erw105

Author

Schneider, Lizette Marais ; Adamski, Nikolai M. ; Christensen, Caspar Elo ; Stuart, David B. ; Vautrin, Sonia ; Hansson, Mats ; Uauy, Cristobal ; von Wettstein, Penny. / The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. In: Journal of Experimental Botany. 2016 ; Vol. 67, No. 9. pp. 2715-2730.

Bibtex

@article{3a56e34bc78d4b968af8e5d91f1af8c5,
title = "The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes",
abstract = "Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes.",
author = "Schneider, {Lizette Marais} and Adamski, {Nikolai M.} and Christensen, {Caspar Elo} and Stuart, {David B.} and Sonia Vautrin and Mats Hansson and Cristobal Uauy and {von Wettstein}, Penny",
note = "{\textcopyright} The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.",
year = "2016",
doi = "10.1093/jxb/erw105",
language = "English",
volume = "67",
pages = "2715--2730",
journal = "Journal of Experimental Botany",
issn = "0022-0957",
publisher = "Oxford University Press",
number = "9",

}

RIS

TY - JOUR

T1 - The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

AU - Schneider, Lizette Marais

AU - Adamski, Nikolai M.

AU - Christensen, Caspar Elo

AU - Stuart, David B.

AU - Vautrin, Sonia

AU - Hansson, Mats

AU - Uauy, Cristobal

AU - von Wettstein, Penny

N1 - © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

PY - 2016

Y1 - 2016

N2 - Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes.

AB - Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes.

U2 - 10.1093/jxb/erw105

DO - 10.1093/jxb/erw105

M3 - Journal article

C2 - 26962211

VL - 67

SP - 2715

EP - 2730

JO - Journal of Experimental Botany

JF - Journal of Experimental Botany

SN - 0022-0957

IS - 9

ER -

ID: 161726609