Accurate protein stability predictions from homology models

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.8 MB, PDF document

Calculating changes in protein stability (ΔΔG) has been shown to be central for predicting the consequences of single amino acid substitutions in protein engineering as well as interpretation of genomic variants for disease risk. Structure-based calculations are considered most accurate, however the tools used to calculate ΔΔGs have been developed on experimentally resolved structures. Extending those calculations to homology models based on related proteins would greatly extend their applicability as large parts of e.g. the human proteome are not structurally resolved. In this study we aim to investigate the accuracy of ΔΔG values predicted on homology models compared to crystal structures. Specifically, we identified four proteins with a large number of experimentally tested ΔΔGs and templates for homology modeling across a broad range of sequence identities, and selected three methods for ΔΔG calculations to test. We find that ΔΔG-values predicted from homology models compare equally well to experimental ΔΔGs as those predicted on experimentally established crystal structures, as long as the sequence identity of the model template to the target protein is at least 40%. In particular, the Rosetta cartesian_ddg protocol is robust against the small perturbations in the structure which homology modeling introduces. In an independent assessment, we observe a similar trend when using ΔΔGs to categorize variants as low or wild-type-like abundance. Overall, our results show that stability calculations performed on homology models can substitute for those on crystal structures with acceptable accuracy as long as the model is built on a template with sequence identity of at least 40% to the target protein.

Original languageEnglish
JournalComputational and Structural Biotechnology Journal
Volume21
Pages (from-to)66-73
Number of pages8
ISSN2001-0370
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2022

    Research areas

  • Mutation, Protein stability, Protein variant, ΔΔG

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 331317936