The Drosophila tumor necrosis factor receptor, Wengen, couples energy expenditure with gut immunity

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 2.1 MB, PDF document

It is well established that tumor necrosis factor (TNF) plays an instrumental role in orchestrating the metabolic disorders associated with late stages of cancers. However, it is not clear whether TNF/TNF receptor (TNFR) signaling controls energy homeostasis in healthy individuals. Here, we show that the highly conserved Drosophila TNFR, Wengen (Wgn), is required in the enterocytes (ECs) of the adult gut to restrict lipid catabolism, suppress immune activity, and maintain tissue homeostasis. Wgn limits autophagy-dependent lipolysis by restricting cytoplasmic levels of the TNFR effector, TNFR-associated factor 3 (dTRAF3), while it suppresses immune processes through inhibition of the dTAK1/TAK1-Relish/NF-κB pathway in a dTRAF2-dependent manner. Knocking down dTRAF3 or overexpressing dTRAF2 is sufficient to suppress infection-induced lipid depletion and immune activation, respectively, showing that Wgn/TNFR functions as an intersection between metabolism and immunity allowing pathogen-induced metabolic reprogramming to fuel the energetically costly task of combatting an infection.

Original languageEnglish
Article numbereadd4977
JournalScience Advances
Volume9
Issue number23
Number of pages15
ISSN2375-2548
DOIs
Publication statusPublished - 2023

ID: 355084575