Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 1.36 MB, PDF document

The atmospheric CO2 growth rate (CGR) variability is largely controlled by tropical temperature fluctuations. The sensitivity of CGR to tropical temperature [Formula: see text] has strongly increased since 1960, but here we show that this trend has ceased. Here, we use the long-term CO2 records from Mauna Loa and the South Pole to compute CGR, and show that [Formula: see text] increased by 200% from 1960-1979 to 1979-2000 but then decreased by 117% from 1980-2001 to 2001-2020, almost returning back to the level of the 1960s. Variations in [Formula: see text] are significantly correlated with changes in precipitation at a bi-decadal scale. These findings are further corroborated by results from a dynamic vegetation model, collectively suggesting that increases in precipitation control the decreased [Formula: see text] during recent decades. Our results indicate that wetter conditions have led to a decoupling of the impact of the tropical temperature variation on the carbon cycle.

Original languageEnglish
Article number965
JournalNature Communications
Volume14
Issue number1
Number of pages9
ISSN2041-1723
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023. The Author(s).

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 337694406