Deep-sea sponge derived environmental DNA analysis reveals demersal fish biodiversity of a remote Arctic ecosystem

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 3.07 MB, PDF document

The deep-sea is vast, remote, and largely underexplored. However, methodological advances in environmental DNA (eDNA) surveys could aid in the exploration efforts, such as using sponges as natural eDNA filters for studying fish biodiversity. In this study, we analyzed the eDNA from 116 sponge tissue samples and compared these to 18 water eDNA samples and visual surveys obtained on an Arctic seamount. Across survey methods, we revealed approximately 30% of the species presumed to inhabit this area and 11 fish species were detected via sponge derived eDNA alone. These included commercially important fish such as the Greenland halibut and Atlantic mackerel. Fish eDNA detection was highly variable across sponge samples. Highest detection rates were found in sponges with low microbial activity such as those from the class Hexactinellida. The different survey methods also detected alternate fish communities, highlighted by only one species overlap between the visual surveys and the sponge eDNA samples. Therefore, we conclude that sponge eDNA can be a useful tool for surveying deep-sea demersal fish communities and it synergises with visual surveys improving overall biodiversity assessments. Datasets such as this can form comprehensive baselines on fish biodiversity across seamounts, which in turn can inform marine management and conservation practices in the regions where such surveys are undertaken.

Original languageEnglish
JournalEnvironmental DNA
Volume5
Issue number6
Pages (from-to)1405-1417
Number of pages13
ISSN2637-4943
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Environmental DNA published by John Wiley & Sons Ltd.

    Research areas

  • 12S, Arctic Mid-Ocean Ridge, baseline, biodiversity, eDNA, metabarcoding, monitoring, sponge grounds, vulnerable ecosystems

ID: 363510944